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1. Introduction

Fundamental string (F-string) tension in 10 dimensions defines the string scale α′ via

TF1 = 1/2πα′. In type IIB theory, there are branes including D1-branes, or D-strings, with

tension TD1 = 1/2πα′gs, where gs is the string coupling. In light of all the progress coming

from dualities in string theory, we now know that the D-strings and the F-strings should be

considered on the same footing and a general string state in type IIB is the bound state of

these two types of strings. In 10 flat dimensions, supersymmetry dictates that the tension

of the bound state of p F-strings and q D-strings is given by [1],

Tp,q = TF1

√

p2 +
q2

g2
s

. (1.1)

However, if our universe is described by superstring theory, six of the spatial dimensions

must be compactified. In type IIB string theory, our universe can be described as a brane

world scenario with flux compactification [2, 3]. In such a scenario, the standard model

particles are likely to be light open string modes in a warped throat present in the Calabi-

Yau manifold. It will be interesting to know how the above tension formula (1.1) is modified

in such a throat.

The string tension formula at the bottom of a throat is also interesting from another

perspective. Brane inflation, a particularly attractive scenario of the inflationary universe,

involves the D3-anti-D3-brane annihilation towards the end of inflation [4, 5]. This annihi-

lation releases the energy to heat the universe to start the hot big bang era. Presumably,

anything that is not forbidden will be produced during this annihilation, in particular F-
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and D-strings. These strings with cosmological sizes will appear as cosmic strings [6 – 9].

Their range of tension is compatible with the current observational bounds [10, 11]. At the

same time, their values are close enough to be detected in the near future, for example, via

gravitational wave detectors, and the study of their properties may be the long sought ex-

perimental window into string theory. Since the D3-anti-D3-brane annihilation most likely

takes place at the bottom of a throat, that will be where the cosmic superstrings are. The

(p, q) cosmic string tension spectrum in the throat will have interesting phenomenologi-

cal and cosmological implications. This is a very strong motivation to understand cosmic

superstrings better and our goal in this note is to determine the tension spectrum of the

(p, q) string at the bottom of a throat in type IIB string theory.

To be specific, we consider the Klebanov-Strassler (KS) throat [12] whose properties

are relatively well understood. On the gravity side, this is a warped deformed conifold.

Inside the throat, the geometry is a shrinking S2 fibered over an S3. The tensions of the

bound state of p F-strings and that of q D-strings were individually computed for the KS

throat [13 – 15] to be

TF1 ' h2
A

2πα′

bM

π
sin

(πp

M

)

, TD1 =
h2

A

2πα′

q

gs
, (1.2)

where p, q are integers, hA is the warp factor at the bottom of the throat, b = 0.93 is a

number numerically close to one and M is the number of fractional D3-branes, that is, the

units of 3-form RR flux F3 through the S3. (This TF1 formula yields values that are within

a percent of that obtained from the more precise formula in ref. [13].) Very interestingly,

the fundamental strings are charged in ZM and are non-BPS. The D-string on the other

hand is charged in Z and is BPS with respect to each other.

The interpretation of these strings in the gauge theory dual is known. The fundamental

string is dual to a confining string between a quark and an anti-quark [16 – 18]. Since it is a

convex function, i.e., Tp+p′ < Tp + Tp′ , the p-string will not decay into strings with smaller

p. Since M quarks can form a baryon, the bound state of M F-strings has zero tension; that

is, M of them can terminate at a point, i.e., the baryon. On the other hand, the D-string

is dual to an axionic string. Indeed, it is argued that the gauge theory dual of the KS

throat must contain a pseudo-scalar bound state (glueball) that plays the role of an axion

field [15]. This axion field is the Goldstone boson associated to the spontaneous breaking

of a global U(1) baryon symmetry. Upon compactification, the global symmetry becomes

local and the string defects coming from the spontaneous breaking of the symmetry are

Abelian Higgs vortices. It seems the D-strings are BPS with respect to each other [15].

On the gravity side, these tensions were calculated by considering a D3-brane stabi-

lized on a 2-cycle by magnetic flux [19]. This is closely related to the dielectric effect [20].

Although both the 5-form flux F5 and the NS-NS 2-form field B2 vanish at the bottom

of the throat, the F3 flux blows up the p F-strings into a D3-brane wrapping a finite S2

inside the S3. In ref. [13], the tension is obtained by considering the F-string as the S-dual

of a blow-up D1-brane where the D3-brane with p units of magnetic flux is wrapping a

finite S2 inside the S3. On the other hand, it was shown that q D-strings can be seen as a

D3-brane with q units of magnetic flux wrapping a shrinking S2 cycle. Ref. [15] finds that
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the D-strings are BPS, that is, no sign that the D-strings are ZK valued, where K is the

value of the NS-NS 3-form flux.

Note that the F-string tension and the D-string tension are evaluated using two dif-

ferent approaches. To find the (p, q) string tension, we like to start with a unified picture

that allows the evaluation of either the F-string or the D-string tension. This is easy to

achieve. The F-string can be seen as a D3-brane with electric flux. We shall show that

the electric flux stabilizes a D3-brane the same way the magnetic flux does. So the S-dual

step is bypassed. This unified description allows us to very simply describe the general

(p, q) bound states by turning on simultaneously both electric and magnetic fluxes on a

D3-brane. A discussion of confining strings as electric flux tubes in a different context

can be found in [21]. One can also see F-string as electric flux tubes in the D3-anti-D3

action [22, 23].

All of this is expected from the SL(2, Z) duality of Type IIB theory. Following from

the SL(2, Z) duality transformation that mixes the B2 and C2 fields, a F-string is S-dual

to a D-string. The D3-brane is self-dual under SL(2, Z) duality [24]. On the other hand,

the electric (E) and magnetic (B) fluxes on the D3-brane are mixed by the SL(2, Z) duality

transformation [25 – 27]. To obtain the p F-strings tension, ref. [13] starts with a D3-brane

with p units of magnetic flux to obtain p D-strings and then S-dual it to p F-strings.

Alternatively, one can S-dualize the D3-brane so it becomes a D3-brane with electric fluxes

to obtain p F-strings directly. Or even simpler, we can simply start with a D3-brane with

the appropriate electric fluxes directly.

In this note, we just start with appropriate electric and magnetic fluxes on a D3-brane.

This is analogous to the early attempts of getting the (p, q) string tension by dissolving

electrical fluxes on a D-string [28, 29]. These methods could only yield approximately the

(p, q) string tension because the gauge dynamics on n D-strings is non-abelian and the gauge

coupling is relevant in two dimensions leading to a strongly coupled gauge theories [28].

Fortunately, our method completely avoids this problem since the gauge theory on the

D3-brane is always U(1) with a dimensionless coupling constant. In some sense, we get rid

of the non-abelian physics by doing the blow-up.

In this approach, we find that the tension formula for the bound states turns out to

have a simple (expected) form:

Tp,q ' h2
A

2πα′

√

q2

g2
s

+ (
bM

π
)2 sin2(

πp

M
), (1.3)

but the way it comes about is interesting. Indeed, the tension is obtained by minimizing

the Hamiltonian of the D3-brane world volume action after integrating out the extra di-

mensions. Care must be taken with the Hamiltonian when one has an electric field on a

D-brane. For example the Chern-Simons terms which do not contribute to the stress en-

ergy tensor due to their topological nature nevertheless affect the Hamiltonian (hence the

tension and energy) by coming into play via the conjugate momentum. This contribution

turns out to be crucial here and leads to the above simple formula (1.3).

This formula has the right limits. Setting either p = 0 or q = 0 reproduces eq. (1.2).

For M → ∞ and b = hA = 1, it reduces to eq. (1.1). Because p is ZM -valued with non-zero
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binding energy, binding can take place even if (p, q) are not coprime. Also, M fundamental

strings can terminate to a point-like baryon, irrespective of the number of D-strings around.

The paper is divided as follows. Sec. 2 reviews the properties of the KS throat we need.

Sec. 3 contains the calculation and the main result. Sec. 4 includes general discussions

and some comments on the issues remaining.

2. A throat in the Calabi-Yau manifold

2.1 The Conifold

A cone is defined by the following equation in C4

4
∑

i=1

w2
i = 0 (2.1)

Here eq. (2.1) describes a smooth surface apart from the point wi = 0. The geometry

around the conifold is studied in [30]. The base of the cone is a manifold X given by the

intersection of the space of solutions of eq. (2.1) with a sphere of radius r in C4 = R8,

∑

i

|wi|2 = r2

We are interested in Ricci-flat metrics on the cone which in turn imply that the base of

the conifold is a Sasaki-Einstein manifold. The simplest five dimensional Sasaki-Einstein

manifold for N = 1 supersymmetry is T 1,1 and it is the only manifold for which the

deformation is explicitly known [12].

The metric on the conifold with base T 1,1 is

ds2
6 = dr2 + r2ds2

T 1,1 (2.2)

ds2
T 1,1 =

1

9

(

dψ +

2
∑

i=1

cos θi dφi

)2

+
1

6

2
∑

i=1

(

dθ2
i + sin2 θi dφ2

i

)

.

It can be shown that

T 1,1 = (SU(2) × SU(2))/U(1) = S3 × S3/U(1)

which has topology of S2 × S3 (with S2 fibered over S3). If ϕ1 and ϕ2 are the two

Euler angles of the two S3s, respectively, then their difference corresponds to U(1) while

ψ = ϕ1 + ϕ2. Since 2π ≥ ϕi ≥ 0, the range of ψ is [0, 4π].

2.2 The warped deformed conifold

The Klebanov-Strassler throat that we are interested in is actually a warped deformed

conifold. This warped deformed conifold emerges in the presence of fluxes. The R-R flux

F3 wraps the S3 while NS-NS flux H3 wraps the dual 3-cycle B that generates the warped
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throat, with warp factor h(r).

1

4π2α′

∫

B
H3 = −K ,

1

4π2α′

∫

S3

F3 = M (2.3)

Geometrically, the conical singularity of eq. (2.1) can be removed by replacing the apex by

an S3 [30],

4
∑

i=1

w2
i = ε2 (2.4)

where we shall take ε to be real and small. It will be convenient to work in a diagonal basis

of the metric, given by the following basis of 1-forms [31, 32],

g1 ≡ e1 − e3

√
2

, g2 ≡ e2 − e4

√
2

g3 =
e1 + e3

√
2

, g4 ≡ e2 + e4

√
2

g5 ≡ e5 (2.5)

where

e1 ≡ − sin θ1 dφ1 , e2 ≡ dθ1 ,

e3 ≡ cos ψ sin θ2 dφ2 − sin ψ dθ2 ,

e4 ≡ sinψ sin θ2 dφ2 + cos ψ dθ2 ,

e5 ≡ dψ + cos θ1 dφ1 + cos θ2 dφ2 (2.6)

The metric of the deformed conifold is studied in [31, 33, 32]

ds2
6 =

1

2
ε4/3K(τ)

[

1

3K3(τ)

(

dτ2 + (g5)2
)

+ cosh2
(τ

2

)

[(g3)2 + (g4)2]

+ sinh2
(τ

2

)

[(g1)2 + (g2)2]
]

(2.7)

where

K(τ) =
( sinh(2τ) − 2τ )1/3

21/3 sinh τ
. (2.8)

At τ → 0, the S2 (the g1 and g2 components of the metric) shrinks to zero, and we are left

with

dΩ2
3 =

1

2
ε4/3(2/3)1/3

(

1

2
(g5)2 + (g3)2 + (g4)2

)

(2.9)

which is a spherical S3. Turning on fluxes, the ten-dimensional metric takes the following

“warped” form

ds2
10 = h−1/2(τ)ηµν dxµdxν + h1/2(τ) ds2

6 (2.10)
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where ds2
6 is given above in eq. (2.7). The warp factor h(τ) is given by the following integral

expression [12]

h(τ) = 22/3 (gsMα′)2 ε−8/3 I(τ) , (2.11)

I(τ) ≡
∫ ∞

τ
dx

x coth x − 1

sinh2 x
( sinh(2x) − 2x )1/3 . (2.12)

We use the convention that the warp factor hA at the bottom of the throat is

hA = h(0)−1/4 = ε2/32−1/6a
−1/4
0 (gsMα′)−1/2 (2.13)

where a0 ≡ I(τ = 0) ∼ 0.71805. So hA measures the mass scale at the bottom of the throat

relative to that in the bulk. In a compact manifold it can be related to the parameters K,

M and gs by hA = e−2πK/3gsM .

3. The spectrum of (p, q) strings from a wrapped D3-brane

We are interested in string-like objects extending in the x0 and x1 directions in the 4

dimensional spacetime coming from a wrapped D3-brane. We first determine the flux

configuration that gives p units of F-string charge and q units of D-string charge and then

we proceed to find their tensions.

3.1 Charges of a (p, q) string

We are looking for a flux configuration on a D3-brane that gives p units of F-string charge

and q units of D-string charge. To achieve this we wrap our D3-brane on a 2-cycle in the

extra dimensions. We choose the following gauge for the world volume coordinates ξ0 = x0,

ξ1 = x1 while ξ2 and ξ3 are the coordinates for the 2-cycle.

The equation of motion for C2 and B2 in type IIB with a D3-brane source are

d ? F̃3 = F5 ∧ H3 +
δSD3

δC2
∧ δ6(x),

d ? (e−2φH3 − C0F̃3) = F5 ∧ F3 +
δSD3

δB2
∧ δ6(x),

where F̃3 = F3 − C0H3. One can obtain the charge by integrating the right hand side of

these equations over an S8 surrounding the x0, x1 directions.

QD1 =

∫

S8

d ? F̃3 QF1 =

∫

S8

d ? (e−2φH3 − C0F̃3)

=

∫

S8

F5 ∧ H3 +

∫

S2

δSD3

δC2
=

∫

S8

F5 ∧ F3 +

∫

S2

δSD3

δB2
(3.1)

For both cases, the first term measures the D1/F charge of the background itself. Here

we are only interested in the charges induced by the D3-brane and so we will drop them.

From now on, we consider solutions for which the dilaton is constant eφ = gs.
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To calculate the D3-brane induced charges, the D3-brane action is needed

SD3 = −µ3

gs

∫

d4ξ
√

−|gab + Fab| + µ3

∫

R2×M2

(

C2 ∧ F +
1

2
C0F ∧ F

)

, (3.2)

where Fab = Bab + λFab, λ = 2π α′ and µ3 = 1/(2π)3 α′2 is the D3-brane charge. We have

set all the scalars (except C0) to zero. Note that the induced D-string charge from the

D3-brane

µ3

∫

S2

F

is not quantized [19]. Only the sum of the induced charge from the D3-brane and the

induced charge from the background is quantized [34]. The way to understand this is to

remember that F contains the pull-back of B2 that could in principle vary continuously.

Only after solving consistently the type IIB equations of motion with a D3-brane source

would we find that the two terms in (3.1) add up to quantized integers.

Nevertheless it was shown that F23 is quantized [19]. Therefore, the induced D-string

charge from the D3-brane is quantized if the pull-back of the NS-NS 2 form is either

quantized or vanishes on S2. The latter is the case at the tip of the original KS background

but not in its S dual. So, in the case where the pull-back of B2 on S2 is zero, we have q

units of D-string charge when F23 = q
2 sin θ dθdφ using that 2πλµ3 = µ1 = 1/λ. And if the

pull-back is non-zero then the F23 flux is still the same but the D-string charge (coming

from the D3-brane) is no longer quantized.

For the F-string, we can relate the charge to the conjugate field strength. Indeed, since

the action only depends on the gauge invariant quantity F , we have that

δSD3

δB2
=

1

λ

δSD3

δF

The conjugate field (i.e., the displacement field, or the dual field strength in the Montonen-

Olive sense) of the electric field Ei = Fi0 is given by

F̃µν = − δS

δFµν
(3.3)

Because of the complicated form of the DBI action, it is simpler to write F̃ as a scalar (not

a 2 form). The D3-brane induced F-string charge is

− 1

λ

∫

F̃ 01 sin θdθdφ. (3.4)

There is no subtlety with quantization and one gets p units of F-string charge when F̃ 01 =

− p
4π . It is important to remember that F̃µν is from the point of view of the gauge theory

as fundamental as Fµν and like the latter it is quantized.

In summary, the flux configuration on a D3 wrapping a 2-cycle that can induce the

charge of p F-strings and q D-strings is

F̃ 01 = − p

4π
F23 =

q

2
. (3.5)
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3.2 The Hamiltonian of a D3-brane

Now that we know which flux configurations give the correct charge of p F-strings and q

D-strings individually, we would like to calculate the tension of the bound state of (p, q)

strings. For this purpose one needs to calculate the Hamiltonian of the system of D3-brane

with magnetic and electric fluxes turned on in its world volume.

We start with a metric of the following form

ds2 = h2ηµνdxµdxν + ds2
6 , (3.6)

where h is the warp factor which is a function of the internal coordinates and it should

not be confused with the convention used in eq. (2.10). Our D3-brane still spans the

x0, x1 direction and a 2-cycle in the extra dimensions. At this point we will make some

assumptions. Let us suppose that only B23 6= 0 as this is very often the case. We assume

that the magnetic and electric field are parallel to each other so we turn on only F23 and

F01. We will also assume that F01 does not depend on the extra dimensions coordinates.

Then we have

gab + Fab =











−h2 −λF10 0 0

λF10 h2 0 0

0 0 g22 F23

0 0 −F23 g33











(3.7)

The D3-brane action (3.2) becomes

S =

∫

dx0dx1

[

−∆
√

h4 − λ2F 2
10 − ΩF10

]

, (3.8)

where

∆ ≡ µ3

gs

∫

d2ξ (g22 g33 + F23
2)

1

2 ,

Ω ≡ λµ3

∫

d2ξ [ (C2)23 + C0F23] .

To get the Hamiltonian one needs to calculate the conjugate momentum D (here D

has one upper index which we drop).

D = − δL
δF10

=
−∆λ2F10

√

h4 − λ2F 2
10

+ Ω (3.9)

Note that D is related to F̃ defined in the previous subsection through a factor equal to the

volume of the S2 sphere, D = 4πF̃ 10 = p. The factor of 4π is because the lagrangian we

are using to calculate D is obtained after we integrate out the 2-cycle (it is a 2–dimensional

lagrangian). One can then solve for the electric flux in terms of D,

F10 = −
h2(D−Ω

λ2∆
)

√

1 + (D−Ω
λ∆ )2

. (3.10)
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The two dimensional Hamiltonian therefore is

H = DF01 − L

=
h2

λ

√

∆2λ2 + (D − Ω)2 . (3.11)

The value of this Hamiltonian after minimization is the (p, q) string tension.

3.3 The KS throat

We will focus at the tip of the throat, τ = 0 and discuss later the possibility of having the

strings at other places. Consider θ = θ1 = −θ2 and φ = φ1 = −φ2. At ψ = 0, this (θ, φ)

coordinate describes the shrinking S2. This (θ, φ) coordinate describes an S2 inside the S3

for ψ = π. We shall fix ψ by minimizing the tension.

The metric eq. (2.11) at the tip is

ds2 ∼ h2
A ηµνdxµdxν + b gsMα′(dψ2 + sin2 ψ dΩ2

2) (3.12)

where hA is the warp factor at the bottom of the throat and b = 22/33−1/3I(0)1/2 = 0.93

is a numerical constant in the KS solution. Here ψ is the usual azimuthal coordinate in

a S3 ranging from 0 to 2π, it is half of the coordinate ψT 1,1 defined in eq. (2.2). We also

absorbed α′ in xµ such that all coordinate in eq. (3.12) are dimensionless.

There are M units of RR 3-forms F3 on the non-vanishing S3 cycle at the tip of the

throat. Its associated two form is given by

C2 = Mα′

(

ψ − sin(2ψ)

2

)

sin θ dθ dφ . (3.13)

At the bottom of the KS solution Bab = 0. The D3-brane is wrapped on an S2 inside S3

at the bottom of the throat. Using metric (3.12) and the background C2 from eq. (3.13)

in our action (3.8), we find

∆ = 4πµ3g
−1
s

[

(b gsMα′)2 sin4 ψ + (
qλ

2
)2

]1/2

,

=
1

λ

√

(

bM

π

)2

sin4 ψ +
q2

g2
s

. (3.14)

Also,

Ω = 4πMα′µ3λ

((

ψ − sin(2ψ)

2

)

+ λC0
q

2

)

,

= q C0 +
M

π

(

ψ − sin 2ψ

2

)

. (3.15)

Note that C0 is zero to leading order in the KS background and so it is understood to

be perturbatively small in our formula. Using equations (3.14), (3.15) together with D =

4πF̃ 10 = −4πF̃ 01 = p in the Hamiltonian eq. (3.11) we get

H =
h2

A

λ

√

q2

g2
s

+
b2M2

π2
sin4 ψ +

[

M

π

(

ψ − sin 2ψ

2

)

− (p − qC0)

]2

. (3.16)
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In particular we note that the warp factor comes correctly as a overall pre-factor for the

tension. After minimization we find

M

π

(

ψ +
b2 − 1

2
sin 2ψ

)

− (p − qC0) = 0 . (3.17)

The tension of the (p, q) bound state is

Hmin = T(p,q) =
h2

A

2πα′

√

q2

g2
s

+
b2M2

π2
sin2 ψ (1 + (b2 − 1) cos2 ψ) (3.18)

where ψ is determined by the minimization condition (3.17).

Note that 1 − b = 0.06734 is quite small. For all practical purposes we may drop the

(b2 − 1) term in eq. (3.17), so the calculations simplify and

T(p,q) = Hmin ' h2
A

2πα′

√

q2

g2
s

+

(

bM

π

)2

sin2

(

π(p − qC0)

M

)

. (3.19)

This expression is numerically within a percent of the more precise minimization result

using eq. (3.17). It also reproduces all the known limits. If p = 0, this gives the tension

of q D1-strings. If q = 0, this gives the tension of p F-strings as obtained by [13]. On the

other hand, if we consider the limit M → ∞, then we obtain

T =
h2

A

2πα′

√

q2

g2
s

+ b2(p − qC0)2 (3.20)

Setting b = 1 and hA = 1 yields the tension of (p, q) strings in flat space-time, eq. (1.1),

where C0 has also been set to zero.

4. Discussion

In figure 1, the key paths are summarized in getting the (p, q) string tension in a warped

deformed conifold. It is clear that one can obtain the answer via a variety of possible paths.

Note that for the D-string case the S2 cycle shrinks to zero size at the bottom of the throat,

one can say that the D-string does not really blow up but the picture is nevertheless useful.

One can see in Figure 1 that an F-string is obtained from a D3-brane with electric

flux which imply that, in the presence of RR fluxes, the F-string blows up in a D3-brane.

This is expected and it has been shown through matrix theory techniques that the F-string

would indeed blow up in such a background [35, 36] (see also [37]). Presumably the (p, q)

string obtained in this paper would blow up in a D3-brane with both magnetic flux and

electric flux.

It is an interesting question to see what the tension of (p, q) strings would be in a

general background. A reasonable guess motivated by eq. (3.11) is

H =
√

T 2
D1 + T 2

F1 (4.1)
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D3+pF̃ 01D3+qF23 D3+qF23+pF̃ 01

D3+qF̃ 01 D3+pF23 D3+pF23+qF̃ 01

qD1

pD1qF1

pF1 (p,q)

(q,p)

SS

GHK

HK

C2 C2

B2B2

Figure 1: The vertical arrows going down are just the result of dimensional reduction after in-

tegrating the 2-cycle over which the D3-brane wraps. Vertical arrows going up are the dielectric

effect (blow-up) and we show in each case what is the background field creating the blow up. We

then show the S-dual picture. GHK is the work of Gubser, Herzog and Klebanov ref. [15] and HK

refers to the work of Herzog and Klebanov ref. [13].

This expression works for the warped geometry and for the flat space-time. The latter

just come from the SUSY algebra and is exact (because it is protected by supersymmetry)

versus the former which comes from the form of the DBI action and has corrections. The

corrections to the DBI action involves derivatives of the field strength over the string length.

We have shown that quite generally (assuming only B01 = 0) we need constant fluxes on

the D3-brane to leading order to get the correct charges. Therefore these corrections are

expected to be very small. This fact leads us to believe that the form (4.1) for the tension

may hold quite generally with or without supersymmetry.

Although the form of our formula eq. (3.19) might be very similar to the flat case

eq. (3.20), there are important differences coming in from the fluxes. We have seen that a

C2 background comes into play in the F-string tension and analogously a B2 background

would affect the D-string tension. The most notable effect from background of fluxes is to

make the F-strings non-BPS and valued in ZM for M units of fluxes. This has been shown

to hold also for F-strings in the Maldacena-Nunez background [38, 13]. Another important

consequence of fluxes is to make the F- and D-string tensions incommensurate. The (p, q)

binds even if p and q are not coprime. This is because the F-strings are ZM charged.

It is expected that once one embeds the KS background in a compactified manifold the

D-string should become valued in ZK . One can see this from the gauge theory side. Once

the KS solution is embedded in a compactification, the U(1) baryon symmetry is gauge

and it is broken down to ZK . The axionic string coming from this symmetry breaking

should be ZK charged. This is analogous to the picture in ref. [39] where it is shown how a

– 11 –
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global D1-string becomes local after compactification in the presence of a D3-brane. It is

expected that, as local strings, the D-strings could break on monopoles [40]. On the gravity

side, we have a dual B-cycle in the compactified theory with K units of H3 on it. This is

exactly what we expect to get ZK but because this cycle has a varying warp factor along

it, all the D-strings are attracted to the bottom of the throat and they cannot get out. We

speculate that subleading corrections to the warp factor might provide the key to get the

ZK expected from the gauge theory side. Finally, the interpretation of the (p,q) string in

the gauge theory dual can be seen as a bound state of confining strings and axionic strings

but this need further study.

In the context of brane inflation, cosmic defects and especially cosmic superstrings

appear quite naturally [6 – 9]. In Type IIB theory, both the warp factor and the Dirac-

Born-Infeld action enhance the number of e-folds of inflation needed to explain the flatness

and the horizon problems. Heating after brane inflation is also quite feasible when the

D3-anti-D3-brane annihilation takes place in one throat, while the standard model branes

are somewhere else [41, 42]. This annihilation releases the energy to heat up the universe

to start the hot big bang epoch and to produce all defects that are permitted; in particular,

F- and D-strings are expected to be copiously produced. Some of these superstrings will

appear with cosmic sizes, as cosmic strings that are expected to evolve into a scaling cosmic

string network. We note that M F-strings will bind into a point; that is, they can bind into

a “baryon” like point-like defect, with a mass ∼ MhA/
√

α′. The cosmological evolution of

such a cosmic string network will be interesting to study. This evolution might be quite

non-trivial. Not only are the string breaking on baryons but their charge depends on where

they are in the throat. At each step in the cascade the flux F3 changes by one unit and so

as a cosmic string moves randomly in the throat it could change from being ZM charged

to being ZM−1 charged for example.

A generic flux compactification will have a number of axions. One expects a new type

of strings charged under each axion field. So it is likely that there are a variety of other

strings besides the F- and the D-strings. The resulting stringy bound states can be very

rich. The (p, q) string tension spectrum discussed in this note gives us a glimpse of what

is possible.
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